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A model of a flow-through perfectly stirred reactor comprising three consecutive competitive 
reactions with parallel reactions of some intermediates and exhibiting bistable behaviour and 
possessing regions with an oscillatory character on the thermodynamic branch is treated. 
The stationary concentration vs parameter dependence is of the fourth degree and the charac
teristic equation, of the fifth degree. 

The situation, where the mathematical solution of the stationary concentrations in 
a kinetic system leads to a cubic equation possessing three real roots over a certain 
parameter region and where the branches corresponding to the existence of a single 
root (the so-called thermodynamic branch and flow-through branch) are stable, is 
referred to as bistability. This behaviour has been described by Schlagell for a system 
with a single time-variable reaction component, and by Edelstein2 and Vidal3 for 
two time-variable reaction components. The degree of the characteristic equation, 
whose roots determine the stability of the system, is given by the number of time
-variable reaction components. For one or two reaction components, the characteristic 
equations are of the first and second degrees, respectively, hence a simultaneous 
existence of real and complex roots is not feasible. If, however, the characteristic 
equation is of the third or a higher degree, the possibility of the simultaneous occur
rence of real and complex roots exists, and this may result in oscillations over a cer
tain region of the thermodynamic and flow-through branches. Such behaviour has 
been observed recently by Nagy and Treindl4 for the reaction of permanganate with 
hydrogen peroxide in a stirred flow-through reactor. 

Since this behaviour has not been so far treated in terms of a model kinetic system, 
this treatment is the objective of the present work. 

THEORETICAL 

For a system of kinetic equations 

dCI/dt = fl(cJ' p) (i = 1, ... , n; j = 1, ... , n) (1) 
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2366 Tockstein: 

with a parameter p, the limiting (turning) points on the curve of dependence of the 
stationary concentration c? on the parameter p (CO j = f(p ) curve) are associated S 

with a zero value of det G{ ofFJCj} where G{ Ofi/OCj} is the Jacobi matrix in the sta
tionary points of the system (1). Since the absolute term of the characteristic equation 

for the eigenvalues A of matrix G is equal to det G, for a bistable system some real 
eigenvalues of matrix G change their sign in the limiting points. For the particular 
case of a bistable system where the c?(p) dependence is cubic this implies that along 
the entire thermodynamic branch as well as along the entire flow-through branch, as 
far as the limiting points, all the real eigenvalues are negative. 

If the kinetic system is such that the existence of both real roots and complex 
conjugate roots is permitted by the characteristic equation and that in some points 
of the thermodynamic and flow-through branches the real part of a pair of complex 
roots passes zero, the requirements of Hopf's bifurcation6 are satisfied and oscillatory 
behaviour appears on the given branch. 
The conditions for the occurrence of two pure imaginary roots can be formulated 

in terms of coefficients of the characteristic equation, and they are in a way connected 
with the violation of some of the Hurwitz's stability conditions 7 (see Table I). 

For quadratic and cubic polynomials the calculation of the conditions in the third 
column in Table I is straightforward. For a fourth degree polynomial, if the roots 
are AI, A2, A3,4 = ±ib, we have 

so that 

a4 = AtA2b2 

a2 = AIA2 + b2 

a3 = -(Al + A2) b2 

al = -(Al + A2) 

a3(a lQ 2 - aOa3) - a4a~ = (At + A2) (AtA2) (Al + A2) b2 -

(2a, b) 

(2c. d) 

- (At + A,2)2 (A,1A,2) b2 = O. (3) 

It is clear from Table I that in each row, the penultimate expression is alw~s nullified 
with the existence of a pair of pure imaginary roots. 

Zero values of the expressions in the last column in Table I are both sufficient 
and necessary for the existence of two pure imaginary conjugate roots. Frequently, 
however, it suffices to consider conditions sufficient for stability breakdown; for 
instance, for a cubic polynomial with a positive a3 a sufficient condition is az = 0, 
and for a fourth degree polynomial with a positive a4• a3 = 0 or az = 0 is sufficient. 

Since the partial derivatives OfdOCj in the stationary point are functions of the 
stationary concentration CO of the reaction component under consideration and of 
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2368 Tockstein: 

the parameter p, the coefficients of the characteristic equation a, also depend on 
these variables, and so the zero values of the expressions in the last column in Table I 
determine a certain curve of dependence of the stationary concentration on parameter 
p (the CO = g(p) curve). The points of intersection of the CO = f(p) and CO = g(p) 
curves then correspond to a state where the stationary concentration CO and param
eter p admit the existence of a pair of pure imaginary roots; in their neighbourhood 
the conditions of Hopf's theorem are satisfied and concentration osciIlations will 
appear. 

p p 

cO 
b 

p p 

cO 
p c 

FlO. 1 

Schematic illustration of the mutual position of cO = f(p) and cO = g(p) curves. In the left 
column, the two curves are shown in full and dotted lines, respectively, the points of their inter
section are represented by open circles, the level of the turning points is shown by dashed line. 
In the right column, the resulting behaviour of the stationary concentration is given in dependence 
on parameter; the hysteresis and regions where oscillations exist are shown. For illustration, the 
branches off the hysteresis region are shown separately for the two directions although in reality 
hey coincide 
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Bistable Kinetic System with Oscillations 

The various alternative that can take place depend on the mutual position of the 
CO = f(p) and CO = g(p) curves as are shown in Fig. 1. 

Since for a bistable system the side (thermodynamic and flow-through) branches 
of the CO = f(p) curve are stable (the real parts of the eigenvalues are all negative), 
an even number of points of intersection of the CO = f(p) and CO = g(p) curves 
must exist: In one point the instability (oscillation) commences and in another it 
must terminate. Because the instable central branch of the saddle-shaped CO = f(p) 
curve actually cannot be reached, the attainment of the turning point is followed 
by a jump from the thermodynamic branch to the flow-through branch and vice 
versa, which is associated with a hysteresis according to the direction of the change 
in parameter p. According to the mutual position of the CO = f(p) and CO = g(p) 
curves, oscillations can take place either on the thermodynamic branch solely or on 
the flow-through branch solely or on both, or else no oscillations will appear if the 
two curves do not intersect. 

Kinetic Model 

For illustrating the above thoeretical treatment, we shall consider a perfectly stirred 
flow-through reactor of a volume V to which a solution of substance A and reagent P 
are fed. The concentration of substance A is a, its flow rate is v. This substance is 
transformed by reagent P in four steps (1, 2, 3, 4) consecutively into products B, C. 
D, E, F by a series of consecutive reactions. Reagent P is assumed to be present 
in such an excess that its concentration can be regarded as pseudoconstant. The 
substances are removed from the reactor all at a flow rate w. Furthermore, the 
reactants are assumed to mutually react by second order reactions as follows: 

D+F 

A+D 

B+D 

2 E (step 5) 

B + C (step 6) 

2 C (step 7). 

The entire process can be expressed schematically (Scheme 1) 

6 

1 I 2 
1 

1 -v- A ---p- ,8 - C 
2' 1 

~D-.L..E 

..-
'" 
,/ I P /'11 
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SCHEME 1 
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and described by kinetic equations (where v = va/v. w = w/v. and the symbols 
A - F, P denote the respective concentrations) as follows: 

dA/dt = v - klPA - k6AD - wA (4a) 

dB/dt = klPA + k6AD - k7BD - k 2PB - wB (4b) 

dC/dt = k2 PB + 2k7BD - k~PC + k6AD (4c) 

dD/dt = -k7BD - k6AD + k~PC - k 3PD - ksDF - wD (4d) 

dE/dt = 2ksDF + k 3PD - k4 PE - wE (4e) 

dF/dt = -ksDF + k4PE - wF. (41) 

Moreover, step 2' is assumed to be so fast that the concentration of substance C is in 
a steady state and negligibly low, so that the term wC approaches zero. 

Considering this steady state and introducing the relative concentrations a = A/a, 
8 = D/a, e = E/a, lp = F/a, p = B/a, where a = av/w, and dimensionless quanti
ties tu = -r, w/u = I, k1P/u = r, k 2P/u = h, k 3P/u = m, k4 P/u = n, k 5/k = e, 
k6/k = A, k7/k = "I (where u = kv/w and k = 1 dm3 mol- 1 S-1) we obtain five 
differential equations for relative concentrations of reactants A, B, D, E, F: 

da/d-r = I - ra - Aa8 - la 

dP/d-r = ra + Aa8 - "IP8 - hP - IP 

d8/d-r = hP + "IP8 - m8 - e8lp - 18 

de/d-r = 2e8lp + m8 - ne - Ie 

dlp/d-r = - e8lp + ne - IIp . 

For concentrations in the stationary state we have 

aO = I/(r + I + A8°) 

po = (XO(r + A8°)/(h + I + "18°) 

eO = lp°(e8° + I)/n 

lp0 = nm8°/[J(n + I) + e8°(J - n)] 

and the balance condition 

(5a) 

(5b) 

(5c) 

(5d) 

(5e) 

(6a) 

(6b) 

(6c) 

(6d) 

(7) 

In the following treatment, we shall keep the stationary concentration 8° as the only 
variable; substituting aO, po, eO, lp0 from Eqs (6a,b,c,d) in Eq. (7) an equation of 
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Bistable Kinetic System with Oscillations 2371 

fourth degree is obtained for the relative stationary concentration of the product D 
in the form 

(.90)4 bo + (.90)3 b1 + (.90)2 b2 + 8°b3 + b4 = 0 (8) 

bo = ~(J- n + m) (9a) 

b1 =(J+ m)(J+ n) + [(h +/)/y + (r +/)/A -1]~(J- n + m) + m~ (9b) 

b2 = [(h +/)/y + (r +/)/A -1](J+ n)(/+ m) + m(J+ n) + 

+ ~(J - 11 + m)[(r + I)(h + 1)/(yA) - riA - h/y] + me(r/A + h/y) (9c) 

b3 = [(r + I){h + 1)/(yA) - h/y - riA] (! + n) (J + m) -

- e(J - n) rh/(yA) + men + I) (r/A + h/y) (9d) 

b4 = - I(J + n) rh/(yA) (ge) 

Eq. (8) represents the dependence of the relative stationary concentration of com
ponent D on the variable parametr 1 which is determined by the outflow rate w 
(Fig. 2). The 8°-1 dependence decomposes into two curves from which only one has 
a physical meaning. The second curve represents physicaIIy inadmissible roots 

f 
o·s 

f 

o 0·2 

FlO. 2 

.-, 
5 

-J-' 0·'5 

I 

1 

1 
-1 , 

, 
I 

~ 

Dependence of parametr f on the relative stationary concentration of component D. Para
meters h = r = 0'001, n = A = 1, m = 0'01, parameters i' and e are as follows: 1 10, 10; 24, 
4; 3 1, 1; -44, 1; 5 inadmissible roots for curve 1 
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2372 Tockstein: 

(for example 8° ~ 1 for f ~ 0). For suitably chosen r, h, m, n, e, y, .£1 the f-8° curve 
displays a region where three positive roots 8° exist for a chosen f. 

The stability of the stationary points on the saddle shaped f-8° curve will be con
sidered based on the characteristic equation. For the kinetic system under study 
the partial derivatives of the reaction rates are 

ari/a~ = -r-.£1.9°-f= -fj~O (lOa) 

ari/ap =0 (lOb) 

ari/a.9 = -.£1~o (lOe) 

arijae = 0 (lOd) 

ari/aqJ = 0 (lOe) 

aPja~ = r + .£1.90 (lla) 

ap/ap = -II - f - y.90 = -(r + .£1.90) ~OjPO (llb) 
apja.9 = .£1~o - ypO (lle) 

apjae = 0 (lld) 

apjaqJ = 0 (lle) 

afJja~ = 0 (l2a) 

afJjap = h + y.90 (12b) 

afJ/a.9 = ypO - m - f - eqJ° = - hpo/.90 (l2e) 

afJjae = 0 (l2d) 

afJjaqJ = - e.9° (l2e) 

ae/a~ =0 (13a) 

aejap =0 (l3b) 

aeja.9 = 2ecpo + m = eDen + f)/.9° (13e) 

ae/ae = -n-f (l3d) 

aejaqJ = 2e.9° (l3e) 

a(jJja~ = 0 (14a) 

a(jJjap = 0 (14b) 

a(jJja.9 = - eqJ° (14e) 

a(jJjae = n (14d) 

a(jJjaqJ = -f - e.9° = -neOjqJ0 (14e) 
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Bistable Kinetic System with Oscillations 

so that the characteristic equation is 

-(flao + A) 0 
r + ..1.90 [(r + ..1.90) aO/po + A] 
o h + y.90 

o 0 
o 0 

-Jao 
Jao _ ypO 

-(hpo/.90 + A) 
2etp° + m 
-etp° 

o 
o 
o 

-en + I + A) 
n 

which gives an equation of the fifth degree in A: 

o 
o 

-e.9° = 0 
2e.9° 

-(nso/tpo + 1) 

1373 

(15) 

(16) 

The side branches of the .9°-1 curve i.e. for I -+ 00, .90 -+ 0, aO -+ 1 or for I -+ 0, 
.90 -+ 0, tp0 -+ 0, are stable. In the former case this follows from the fact that under 
these conditions, where tp ~ 0, po ~ 0, hpo/.90 ~ n + I, nBo/tpo ~ I, (r + ..1.90) 
aO/po ~ h + I, Eq. (15) can be simplified to 

(I + A) (n + 1 + A) {(I + A) [(I + h + A) (n + 1 + A) - h] - rh} = 0 (17) 

so that for I ~ n, I ~ h all roots are negative: 11.,2 = -I, 13 ,4 = ±,.jh - I, AS = 
= r -I. 

In the latter case, the stability follows from the form of the determinant (15), 
where for I -+ 0 all the elements above the diagonal are zeroes, so that the determinant 
can be written as the product 

(18) 

whose roots are all negative. 

Inasmuch as the real roots can only change their sign in the limiting turning points 
of the 1-.9° curve and lead to instability of the central branch of the saddle-shaped 
curve, the question remains to be answered as to whether no instability can take 
place off this centrale part of the saddle due to the occurrence of complex conjugate 
roots with a positive real part, hence by nullification of the expression H4 == 
== (a304 - oSa2) (a1a2 - aOa3) - (a104 - aoas)2. 

We have numerically calculated the term H4 for individual points on the 1-.9° 
curves and those regions whose points give H4 < 0 are presented as heavy lines 
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2374 Tockstein 

in Fig. 2. Those regions which are outside of saddle fulfill the conditions of the 
undamped oscillations. By numerical integration of Eqs (Sa -f) these oscillations 
have been verified. For example the parameters r = 0'02, h = m = 0'002, n = 
= A = 0'7, '}' = e = 10,/ = 0·3 give amplitude of 8° = 0'43 in distances of 44 units 
of T. 
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